CHOOSING A FACTORING STRATEGY

Step 1: If necessary, put the polynomial in descending order.
Step 2: If possible, factor out a GCF. If the highest degree term is negative, factor out a negative GCF.

Step 3: How many terms are in the polynomial?
a. If there are two terms, decide if one of the following can be applied.

Difference of two squares: $\mathrm{a}^{2}-\mathrm{b}^{2}=(\mathbf{a}+\mathbf{b})(\mathbf{a}-\mathrm{b})$
Difference of two cubes: $\mathbf{a}^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$
Sum of two cubes: $\quad a^{3}+b^{3}=(a+b)\left(a^{2}-\mathbf{a b}+b^{2}\right)$
b. If there are three terms, try one of the following

Perfect square trinomials: $\mathbf{a}^{2}+2 \mathbf{a b}+\mathbf{b}^{2}=(\mathbf{a}+\mathbf{b})^{2}$

$$
a^{2}-2 a b+b^{2}=(a-b)^{2}
$$

If not a perfect square trinomial, factor using methods presented in Sections 4.2, 4.3 and 4.4.

Leading Coefficient 1 - Multi/Add
AC/B method works for both leading coefficients of one or not one.

If there are four or more terms, try factoring by grouping.
Step 4: See if any factors in the factored polynomial can be factored further.

Step 5: Check by Multiplying

